skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liza, Fatema Tabassum"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    he Universal Globally Adaptive Load-balance Routing (UGAL) with global information, referred as UGAL-G, represents an ideal form of adaptive routing on Dragonfly. UGAL-G is impractical to implement, however, since the global information cannot be maintained accurately. Practical adaptive routing schemes, such as UGAL with local information (UGAL-L), performs noticeably worse than UGAL-G. In this work, we investigate a machine learning approach for routing on Dragonfly. Specifically, we develop a machine learning-based routing scheme, called UGAL-ML, that is capable of making routing decisions like UGAL-G based only on the information local to each router. Our preliminary evaluation indicates that UGAL-ML can achieve comparable performance to UGAL-G for some traffic patterns. 
    more » « less